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Summary 

A method for 3D modeling and interpretation of log 
properties from complex seismic attributes (obtained from 
3D post stack seismic data) is developed by integrating 
Principal Component Analysis and Local Linear Modeling. 
Complex seismic attributes have non-linear relationships 
with petrophysical properties of rocks. These complicated 
relationships can be approximated using statistical 
methods.  

This method has been tested successfully on real data sets.
Log properties (sonic, gamma ray density etc.) were 
predicted at the location of the second well (blind well 
test). It has proved to work with limited log information 
(data from one well) whereas conventional methods, such 
as geostatistics, used for this purpose need well log 
information from several wells to correlate seismic and 
well data. Once the performance of the model is verified by
blind well test, 3D log volumes can be calculated from 3D 
seismic attribute data. 

Introduction 

Seismic data are routinely and effectively used to estimate 
the structure of reservoir bodies.  Also they have been 
increasingly used for estimating the spatial distribution of
rock properties. Many authors have investigated the 
possible relations between individual seismic attributes and 
rock properties (or structural indications). Taner et al. 1994 
published a list of such relations. The idea of using multiple
seismic attributes to predict log properties was first 
proposed by Schultz et al. (1994). They used log data from 
15 wells to train with seismic attributes and predict rock 

properties. Hampson et al. (2001) also explains use of 
different neural networks for multi-attribute analysis and 
reservoir property prediction.  
While we know that seismic signals features are directly 
caused by rock physics phenomena, the links between these 
two are complex and difficult to derive theoretically. 
Seismic response depends on many variables, such as 
temperature, volume of clay, overburden, pressure, nature 
and geometry of the layering, and other factors which affect 
elastic and absorption response. These complex relations 
can vary from one layer to another, and even within a 
single layer or reservoir compartment (Schultz et al., 1994). 

Schultz et al. (1994) showed that simultaneous use of 
seismic attributes with well log data leads to better 
prediction of reservoir or rock properties, compared to 
estimations using only well data. A reasonable way to 
combine seismic attributes and well log data for property 
prediction should include a statistical method.  

Methodology 

The data used in this study belongs to a shaly sandstone 
reservoir in the Middle-East. Two wells were selected for 
this study. One for training the network and the other one 
for cross-validation (the distance between two wells is 
approximately 4 km).The main seismic attributes that are 
used in this study are amplitude envelope, first and second 
derivative of amplitude, quadrature trace, instantaneous 
frequency and dominant frequency. Attribute data are 

normalized and reduced using principal component analysis 
before modeling task. The proposed unsupervised 
clustering method in this paper is Fuzzy-Self Organizing 
Map (FSOM) in which the Gustafson-Kessel algorithm is 
integrated in the learning and updating strategies of the 
Kohonen Self Organizing Maps (Kohonen, 1989). Bezdek 
et al. (1992) introduced a FSOM method by combining the 
FCM clustering in the learning rate and updating strategies 
of the SOM and showed the superiority of this method 
compared to SOM. Also, Hu et all. (2004) shows that 
FSOM is more efficient than the SOM and vector 
quantization in both speed and accuracy. 

  
In this method, equation (1) is devised for updating the 
centers of clusters (Bezdek et al., 1992): 
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where l=1,…,M is the number of data points, j=1,…,K or C 

is the number of clusters and i=1,…,N is the dimension of 
the input data (number of attributes), c  is the center of 
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cluster, µ is the membership degree of data samples and t
is the number of iteration. (Nelles, 2001). 

After clustering the data, centers can be embedded in the 
hidden layer of the local linear neuro-fuzzy networks. The 
network structure of a local linear neuro-fuzzy model is 
depicted in Figure.1. Each neuron realizes a local linear 
model (LLM) and an associated validity function that 
determines the region of validity of the LLM. The 
outputs of the LLMs are (Nelles, 2001) 

ˆ ... , (6)0 1 21 2
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where N is the number of the data samples, M  is the 
number of the local linear models (in other words, 
clusters),  p is the dimensionality of the input space 

(number of attributes) and
ij

w denotes the LLM 

parameters for neuron i.  

The validity functions form a partition of unity, i.e., they 
are normalized such that 
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Therefore, the network output is calculated as a weighted 

sum of the outputs of the local linear models where ( )iΦ ⋅

are interpreted as the operating point dependent weighting 
factors. The neuro-fuzzy network interpolates between 
different LLMs with the validity function. The validity 
functions are chosen as normalized Gaussians. (Nelles, 

2001). 
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In the global estimation approach (Nelles, 2001) all 
parameters are estimated simultaneously by least squares 
optimization. The parameter vector contains all n=M(p+1)

parameters of the local linear neuro-fuzzy model in (8) with 
M neurons and p inputs:  
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T
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The associated regression matrix X for N measured data 
points is (Nelles 2001):  
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In global estimation, the following loss function is 
minimized:  
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where                   represent the model errors for data 
sample {uk, yk}. 

The globally optimal parameters ŵ can be calculated either 

by direct methods or using iterative methods such as 
Conjugate Gradient method (Taner, 2001). In the direct 
method, (for N>M(p+1))  
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Results 

Local Linear Modeling finds the weights relating seismic 
attributes to well log data. Using blind well test (cross-
validation), optimum weights are found through an iterative 
procedure that best map log information from seismic data. 

Once the best weights are found, 3D volumes rock 
properties can be calculated from 3D seismic data. Figure 
(2) shows the results of blind well test for modeling a- 
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density (with correlation coefficient of 85%), b- AI (with
correlation coefficient of 87%), c- Sonic (with correlation 
coefficient of 84%) and d- GR log (with correlation 
coefficient of 73%). The modeled logs are shown in blue 
and the actual measured values are shown in red. 
Horizontal axes show the log values and vertical axes show 
sample number (depth).  

After finding the optimal model parameters, they can be 

used to map rock property volumes from 3D seismic data. 
Some modeling results are shown in Figure (3); a) shows 
seismic section which was selected for modeling. It shows 
a section of about 250 ms length, b) shows the result of 
density modeling where density has been modeled for the 
entire seismic section and actual log measurements (at 
location of 50th trace where a black arrow points to the 
location of well) are superimposed on the modeled 
background. As shown in section b, our predictions in 
background are in an excellent agreement with the actual 
superimposed log measurements and high/low density 

layers are clearly distinguishable. Color bar shows the 
values of density in gr/cc. Section c) shows AI section and
the measured AI is superimposed. Color bar represents AI 
values in units of kg/sm2. Section d) shows the modeled 
Gamma Ray (shaliness) values for the entire 2D section, 
again an excellent agreement and consistency is seen 
between modeled background GR values and superimposed 
measured GR values at well location (~ 50th  trace). Color 
bar shows GR values in units of API. 

Conclusions 

A statistical method has been developed for estimation of 
rock properties from seismic data and tested successfully 
on real data sets. Unlike conventional methods that need 
many wells for reservoir modeling, the proposed method 
works with limited well log information (one well). 
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Figure. 1. Network Structure of a static local linear neuro-
fuzzy model with M neurons for p inputs.(Nelles, 2001)
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Figure 3: a) seismic section used for modeling log properties, b) modeled density log values in gr/cc units,  

actual measured well log values are superimposed at around 50th trace. c) Modeled AI values in units of 
kg/sm2. d) Modeled GR log section in units of API. More explanations are provided in the text.

Figure 2: Blind well test (cross-validation) results for modeling a) density, b) AI, c) Sonic and d) GR log,  
with correlation coefficients  of 85%, 87%, 84% and 73% respectively. Horizontal axes show the log  

values and vertical axes show sample number (time interval is about 100 ms).
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