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ABSTRACT
Elastic interactions between pores and cracks reflect how they are organized or spa-
tially distributed in porous rocks. The principle goal of this paper is to understand
and characterize the effect of elastic interactions on the effective elastic properties. We
perform finite element modelling to quantitatively study how the spatial arrangement
of inclusions affects stress distribution and the resulting overall elasticity. It is found
that the stress field can be significantly altered by elastic interactions. Compared with
a non-interacting situation, stress shielding considerably stiffens the effective media,
while stress amplification appreciably reduces the effective elasticity. We also demon-
strate that the T-matrix approach, which takes into account the ellipsoid distribution
of pores or cracks, can successfully characterize the competing effects between stress
shielding and stress amplification. Numerical results suggest that, when the concen-
trations of cracks increase beyond the dilute limit, the single parameter crack density
is not sufficient to characterize the contribution of the cracks to the effective elastic-
ity. In order to obtain more reliable and accurate predictions for the effective elastic
responses and seismic anisotropies, the spatial distribution of pores and cracks should
be included. Additionally, such elastic interaction effects are also dependent on both
the pore shapes and the fluid infill.
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INTRODUCTION

Sedimentary rocks are generally porous and often fractured or
cracked to some extent. Understanding their elastic behaviour
is essential to interpret and predict sonic measurements and
seismic responses in terms of rock properties. This under-
standing comes primarily from effective medium theories that
relate the microstructural parameters of rocks (mineral com-
position, porosity, microstructure, etc.) to the effective elas-
tic responses (Guéguen and Kachanov 2011). Consequently,
many theoretical models have emerged, seeking to predict the
effective elastic properties in porous, cracked media. Most of
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them are based on strong assumptions with idealizations and
simplification of the complexity of real rocks.

The most popular approaches use non-interaction appr-
oximation (NIA) to predict the overall compressibility of rocks
containing finite concentrations of pores and cracks, owing to
the difficulty of solving elastic interactions between pores and
cracks. Pioneering work concerning NIA was initiated by the
paper of Eshelby (1957), in which he presented the solution
to the strain field of an ellipsoidal inclusion in an infinite,
homogeneous solid. Generally, there are two approaches to
formulate the NIA theory. The first type of NIA approach dir-
ectly estimates the effective stiffness as a function of porosity
and crack density (Walsh 1965; O’Connell and Budiansky
1974; Kuster and Toksöz 1974; Hudson 1980, 1981, 1994).
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Walsh (1965) predicted the compressibility of dry rocks with
spherical pores and narrow cracks and found that pore shapes
and their volume concentration can be combined to affect the
overall elasticity. By applying a long wavelength, first-order
scattering theory, Kuster and Toksöz (1974) calculated the ef-
fective moduli for randomly oriented inclusions. Their results
are considered to be valid only for a small-volume fraction
of inclusions, since the multiple scattering effects are ignored
in their methods. Based on a scattering-theory analysis of the
mean wavefield in an elastic solid with thin, penny-shaped el-
lipsoidal cracks or inclusions, Hudson derived the first-order
correction and second-order correction to compute the effec-
tive moduli of the cracked media (Hudson 1980, 1981, 1994).
The first-order Hudson’s model that ignores the crack inter-
actions can only work at low crack density. The second-order
expansion of Hudson’s model takes into account the pair-wise
interactions between cracks but gives an unphysical prediction
at high crack density. The dilute limit in Hudson’s theory for
both the first- and second-order terms is less than 0.1.

The second type of NIA approach considers the ef-
fective compliance as a sum of the contributions from the
matrix compliance and excess compliances from pores and
cracks (Schoenberg 1980, 1983; Kachanov 1992; Kachanov,
Tsukrov and Shafiro 1994; Sayers and Kachanov 1995; Liu,
Hudson and Pointer 2000; Kachanov, Shafiro and Tsukrov
2003; Grechka and Kachanov 2006; Vernik and Kachanov
2010). Kachanov (1992) and Kachanov et al. (2003) con-
cluded that compliance-based NIA remains sufficiently accu-
rate at large crack density and strong interactions. They stated
that the two competing interaction effects of stress shielding
and stress amplification can counteract and cancel each other,
so the pore and crack interactions can be neglected. Another
argument for the proponents of the compliance-based NIA is
that this theory can yield reasonable estimates at high volume
concentration of pores and cracks, while the stiffness-based
NIA typically fails. Rather than assuming that the fracture is
a cluster of penny-shaped cracks, Schoenberg (1980, 1983)
suggested to describe the fractures as planes of weakness with
linear-slip boundary conditions and the relations between the
geometry of penny-shaped cracks and the fracture compliance
were derived by Schoenberg and Douma (1988) and Sayers
and Kachanov (1995).

So far, we have to bear in mind that the above men-
tioned NIA inclusion and crack theories ignore the elastic
interactions between pores and cracks. Hence, theoretically,
they can work only for dilute concentrations. However, these
dilute limits (roughly, porosity less than 10 per cent, crack
density less than 0.1) make the NIA theory not applicable
for many sedimentary rocks. To overcome the dilute limit of

NIA, it is of great interest to study how the pore and crack
interactions affect the elastic behaviours of rocks.

To put it more specifically, pore and crack interactions
reflect how pores and cracks are organized or spatially dis-
tributed. As we know, the geometrical arrangement of pores
and cracks can have large variations due to their deposi-
tion and diagenesis during the geological history. Physically,
such spatial distributions and correlations of pores and cracks
can affect the local stress field and the resulting overall
elastic properties. In order to study the effect of pore and
crack interactions, some rock physics schemes, such as the
self-consistent (SC) theory (Budiansky 1965; Hill 1965; Wu
1966; Berryman 1980a, 1980b, 1995; Hornby, Schwartz and
Hudson 1994) and differential effective medium (DEM) the-
ory (Nishizawa 1982; Norris 1985; Zimmerman 1991; Berry-
man 1992; Hornby et al. 1994; Xu 1998), are proposed to
handle large concentrations of pores and cracks. These two
rock physics schemes, simulating the pore and crack inter-
actions in an implicit way, are relatively successful and have
certainly been popular in the past decades. An important con-
ceptual difference between the DEM and SCA schemes is that
the DEM scheme treats each constituent asymmetrically with
a preferred host matrix, whereas the SCA scheme does not
identify any specific host material but treats the composite
as an aggregate of all the constituents (Mavko, Mukerji and
Dvorkin 2009). In contrast to DEM and SC that consider the
elastic interactions implicitly, Jakobsen (2004), Jakobsen and
Chapman (2009) and Jakobsen, Hudson and Johansen (2003)
formulated the effective stiffness using T-matrix language to
explicitly characterize the pore and crack interactions.

The paper is organized as follows: first, we perform fi-
nite element modelling to study how elastic interactions (stress
amplification and stress shielding) affect stress field distribu-
tion and the resulting overall elasticity. We then introduce the
T-matrix theory, which explicitly simulates elastic interactions
and investigate the influence of the spatial distribution of pores
and cracks on the effective stiffness. We next numerically com-
pare the performance of different effective medium theories
in modelling elastic responses and the resulting anisotropies
of porous, cracked rock. We end with discussions and
conclusions.

NUMERICAL EXPERIMENT ON STRESS
INTERACTION

In this section, finite-element modelling (Software COMSOL)
is employed to investigate stress interactions between cracks.
We simulate remote stress boundary conditions by applying a
constant load (70 000 Pa) to a homogeneous 2D solid matrix
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Figure 1 First principal stress distribution of one crack in a homogeneous solid matrix. To the right, the stress field around the tips of the
crack are zoomed-in. The iso-stress lines that are present around the crack represent the variation of the stress field magnitude. Note the stress
concentration occurs at the crack tip and stress dilution occurs at the crack face. The host solid matrix has 2D circle geometry (radius = 5 cm).
The colour-bar indicates the magnitude of stress in Pa.

(E = 70 GPa, ν = 0.33) with a radius of 5 cm. The aspect
ratio of the ellipsoidal inclusion is set to 0.1 to mimic the
geometry of the crack. Instead of a uniform stress field, the
existence of the crack alters the stress distribution in its vicin-
ity, as shown in Fig. 1. It turns out that the alteration of the
stress field is strongly localized. The high density of iso-stress
lines near crack tips suggests that the stress magnitude varies
strongly around crack tips. Also, the colour bar clearly indi-
cates a stress concentration (stress magnitude is greater than
the background) near the crack tips and a stress dilution (stress
magnitude is less than the background) near the crack faces. In
Fig. 2, we plot the detailed stress magnitude values along two
straight lines crossing the centre of the crack vertically and
horizontally. First, the stress field inside the elliptical crack
is considered to be uniform and approximates to zero when
the crack is dry or filled with gas. Second, at the locations
far away from the crack, the values of the stress magnitude
on both lines are close to each other, because they are al-
most not affected by the introduction of the crack. Finally,
when approaching towards the tips and faces of the crack,
it is interesting to see that the resulting stress fields exhibit
distinct behaviours. Along the defined horizontal coordinate,
the stress magnitude increases dramatically to about −3 × 105

Pa when close to the crack tip, then abruptly drops to zero.
By contrast, along the defined vertical coordinate, the stress

Table 1 Comparison of a normalized volumetric strain that corre-
sponds to different stress interaction situations in Fig. 3.

No cracks Non-interaction Stress Shielding Stress Amplification

1 13.2 9.3 17.1

magnitude gradually reduces to 0 Pa when close to the crack
face, evidently suggesting that a stress dilution dominates the
stress field.

In the next numerical experiment, we introduce two
cracks into the matrix, with three different spatial arrange-
ments, to illustrate three types of stress interactions, which
are non-interaction, stress amplification and stress shielding
respectively (Fig. 3). Applying the same constant load in all
three cases, we also calculate the total volumetric strains, nor-
malized to the volumetric strain of the matrix (without cracks)
and compare them in Table 1. Figure 3(a) shows the stress dis-
tribution when the two introduced cracks are far apart from
each other, to mimic the non-interacting situation. It seems
that the stress field of the one crack does not affect the stress
field of the other crack, so the overall elastic interactions be-
tween the two cracks are trivial. As shown in Table 1, the
normalized volumetric strain consequently increases from 1
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Figure 2 The variation of the first principal stress of a single crack with the positions of the horizontal coordinate (black line) and vertical
coordinate (red line). The horizontal coordinate is defined as the line between the two points (−5, 0) and (5, 0); the vertical coordinate is defined
as the line between the two points (0, −5) and (0, 5). A schematic illustration of the horizontal and vertical coordinates is displayed in the
bottom-right corner.

to 13.2 due to the extra strain of the two non-interacting
cracks. Figure 3(b) shows the stress distribution due to a set
of coplanar cracks when crack tips approach closely to each
other. As expected, the stress is concentrated at the area be-
tween the tips of the cracks. The stress amplification is clearly
illustrated in Fig. 4(a). Along the horizontal coordinate, the
stresses magnitudes between the two neighbouring tips in-
crease to much higher values compared to those beside the
two isolated tips. Along the vertical coordinate, the stress in-
teraction transits from stress shielding to stress amplification
when approaching the centre point between the two cracks.
It is also interesting to note that the maximum local stress
magnitude does not occur at the exact midway between the
two cracks. Actually, there exist two maximums that symmet-
rically occur very close to the tips. In this case, the resulting
volumetric strain increases to 17, which is higher than the
non-interacting situation. This is because the stress ampli-
fication dominates the stress interaction and thus increases
the overall strain. Figures 3(c) and 4(b) show the stress field
distribution due to the set of stacked cracks, where the stress
shielding dominates the stress interaction when the crack faces

approach closely to each other. It is clear that the overall stress
magnitude is much lower than that due to the set of copla-
nar cracks and the local stress magnitude at the tip of each
crack is much stronger than that occurring at the centre of
the tips between the two cracks. As illustrated in Fig. 4(b), as
the position moves from the far-field to the area between the
two stacked cracks along the horizontal coordinate, the stress
interaction becomes complicated and varies strongly with the
location. However, it is interesting to note that the values of
stress magnitude in the majority of the area between the two
cracks are very close to zero. This is a clear indication that the
stresses fields are shielded between the two cracks when their
faces are close to each other. Since the tips are also closer to
each other in this case, there certainly exists a competing effect
between the stress amplification and the stress shielding but
the overall stress interaction is still controlled by stress shield-
ing. As shown in Table 1, the volumetric strain due to the set
of stacked cracks decreases considerably compared with the
non-interacting case. Consequently, it can be concluded that
the effective stiffness tends to be higher when stress shielding
dominates the stress interactions, while the effective stiffness
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Figure 3 Comparison of the first principal stress distribution by introducing different sets of cracks into the homogeneous solid matrix:
(a) cracks are far apart from each other, which is considered as a non-interaction situation, (b) coplanar cracks where stress amplification
dominates the stress interaction and (c) stacked cracks where stress shielding dominates the stress interaction. The iso-stress lines represent the
variation of the stress field magnitude for the different cases of stress interactions. The colour-bar indicates the magnitude of stress in Pa.

tends to be lower when stress amplification dominates the
stress interactions.

T - M A T R I X T O C H A R A C T E R I Z E E L A S T I C
INTERACTIONS

As illustrated in the previous section, the impacts of stress
shielding and stress amplification on the overall effective stiff-
ness depend on the spatial arrangements of the pores and
cracks. Therefore it is necessary to find a way to explicitly
characterize such spatial arrangements in order to properly
model the elastic interactions. In this section, we investigate
how the T-matrix approach captures the elastic characteristic
due to different spatial distributions of pores and cracks.

T-matrix formulation

Based on multiple-point correlation functions, the T-matrix
language explicitly takes into account the elastic interactions
between inclusions to compute the effective elastic properties.
The effective stiffness C∗

T of a cracked, porous medium using
the T-matrix approach was formulated by Jakobsen (2004)
and Jakobsen et al. (2003):

C∗
T = C0 + 〈T1〉(I−〈T1〉−1 X)−1, (1)

where

〈T1〉 =
N∑

r=1

vr tr , (2)

tr = δCr (I−GrδCr )−1, (3)
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Figure 4 The variation of the first principal stress with the positions of the horizontal coordinate (black line) and vertical coordinate (red line)
for the case of: (a) coplanar cracks, (b) stacked cracks. The horizontal coordinate is defined as the line between the two points (−5, 0) and
(5, 0); the vertical coordinate is defined as the line between the two points (0, −5) and (0, 5). A schematic illustration of the horizontal and
vertical coordinates is displayed in the bottom-right corners.

and

δCr = Cr−C0. (4)

Here, C0 is the fourth-rank stiffness of the host rock;vr

is the volume fraction of the inclusions (r = 1, 2, . . . ..N);
Cr represents the stiffness tensor of the r th inclusion; I is the
fourth-rank identity tensor; Gr is a fourth-rank tensor given by
the strain Green’s function integrated over the characteristic
inclusion shape (Mura 1987); X is the second-order correction
for the effects of an inclusion tensor:

X = −
N∑

r=1

N∑

s=1

vr tr Grs
d vsts, (5)

where Grs
d represents the two-point interaction between the

r th set and sth set of inclusions. The fourth-rank tensor Grs
d

can be obtained in the same way as Gr except that the aspect
ratio of the inclusion αr is set as the aspect ratio of spatial
distributionαd.

The definitions of the aspect ratio of inclusion αr and
the aspect ratio of spatial distribution αd are schematically
displayed in Fig. 5. In fact, the concept of the aspect ratio of
spatial distribution represents the conditional probability of
finding another inclusion given the position of an inclusion.
Figure 6 shows that an individual crack in two rocks has the
same aspect ratio but organized in a different way. If αd < 1,
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Figure 5 Schematic illustration of a 2D cross-section through a 3D
ellipsoidal crack distribution in a T-matrix model. The aspect ratio
of the individual cracks is a1/ b1 and the aspect ratio of the crack
distribution is a2/b2.

it indicates that the probability of an inclusion showing up
in the X direction is higher than the probability of finding
an inclusion in the Y direction. Ponte-Castaneda and Willis
(1995) pointed out that the maximum value for an aspect ra-
tio of spatial distribution αd should satisfy the relationship
αd(max) = αr/v, where v is the volume concentration of inclu-
sions.

Comparisons of the effective stiffness C11, C33, C44,
C66 and C13 as a function of crack density predicted by the
T-matrix are displayed in Fig. 7. In our modelling, cracks are
vertically aligned and parallel to each other in an isotropic host
rock and the resultant cracked rock is transversely isotropic
with a horizontal symmetry axis (HTI). The host matrix is
assumed to be calcite (K = 76.8GPa, μ = 32GPa). There are
five independent components in the effective elastic stiffness
tensors: C11 and C33 correspond to the P-wave propagat-
ing perpendicular and parallel to the crack plane, respec-
tively; C44 and C66 are related to the polarization of the

S-wave parallel and perpendicular to the crack plane, respec-
tively; C13 is intimately associated with the P-wave veloc-
ity at 45° to the symmetry axis. The volume crack density
ε (O’Connell and Budiansky 1974; Hudson 1980) is deter-
mined by the crack aspect ratio and the crack induced poros-
ity. In Fig. 7, the dashed straight lines represent the first-
order T-matrix (stiffness-based NIA) predictions and the solid
lines, exhibiting a non-linear relationship with crack density,
are for the high-order T-matrix predictions taking into ac-
count the elastic interactions. C11 and C33, predicted by
stiffness-based NIA, typically break down when the crack
density is over 0.15. However, the high-order T-matrix can
still provide reasonable estimates even at high crack den-
sity. They overlap at a crack density less than 0.02 but are
markedly separated at high crack density, where the elas-
tic interactions are considered to be strong and cannot be
ignored.

Effect of spatial distribution on effective stiffness

Figure 8 illustrates the influences of the aspect ratio of the in-
clusion and the aspect ratio of spatial distribution on the stiff-
ness of C11. Clearly, compared with the aspect ratio of spatial
distribution, the aspect ratio of inclusion still has a dominant
impact on controlling the rock’s overall elastic behaviour. It is
also interesting to see that the elastic stiffness exhibits a differ-
ent sensitivity to the aspect ratio of spatial distribution when
the aspect ratio of inclusion varies. Generally, the aspect ratio
of spatial distribution has a bigger impact on the effective elas-
tic stiffness when the aspect ratio of inclusion is lower. This is
because when the aspect ratio of the crack is smaller, the local
stress field can readily exhibit concentration and dilution and
the stress interactions consequently exercise a bigger influence
on the elastic properties. We can also conclude that the com-
puted elastic stiffness decreases with an increasing aspect ratio
of spatial distribution. This can be explained by the variation
of stress field due to the crack interactions. When the aspect
ratio of the spatial distribution increases, the crack tips will
approach closer and closer. As a result, the stress amplifica-
tion will increase much stronger than the stress shielding and
the effective elastic stiffness will decrease accordingly. This
is consistent with the numerical experiment about the stress
interactions we presented in Fig. 3. Furthermore, it demon-
strates that the parameter ‘aspect ratio of spatial distribution’
can successfully characterize the competing effects between
stress shielding and amplification.

We also evaluated the interaction effects on both dry
and brine filled cracks and compare them in Fig. 8(a,b). The
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Figure 6 Schematic illustration of the concept of the aspect ratio of spatial distribution. Each individual crack has the same aspect ratio but
organized in a different way. The red circle indicates the aspect ratio of spatial distribution: (left) the aspect ratio of spatial distribution is smaller
than 1; (right) the aspect ratio of spatial distribution is bigger than 1.

Figure 7 Effective elastic properties of cracked carbonate as a func-
tion of crack density. C11, C33, C13, C44 and C66 represent five
independent elastic stiffness constants in HTI medium. The dashed
and solid lines indicate the effective elastic stiffness predicted by a
first-order T-matrix and a high-order T-matrix, respectively. The as-
pect ratio of the crack is set as 0.05 and the aspect ratio of spatial
distribution is set as 1.0.

results show that, for the brine filled cracks, the elastic stiffness
C11 has less sensitivity to the variation of the aspect ratio
of spatial distribution. Physically, this makes sense because
the brine often drastically stiffens the very compliant cracks
(Schoenberg and Sayers 1995). As a consequence, the stress
interactions are becoming weaker and have less impact on the
effective elastic stiffness.

COMPARISON OF D IFFERENT EFFECTIVE
MEDIUM THEORIES

To gain insights into the advantages and limitations of various
effective medium theories, we compare the performances of
the T-matrix with Hudson’s crack theory, compliance-based
non-interaction approximation, SCA and differential effec-
tive medium model, as displayed in Fig. 9. As expected, sev-
eral predictions largely agree with each other when the crack
density is low but there are significant differences at high
crack density. Again, this illustrates the importance of in-
cluding the effects of spatial distribution when coping with
non-dilute concentrations of pores and cracks. Evidently, at
high crack density, the prediction given by Hudson’s crack
theory (stiffness-based NIA) typically breaks down and it be-
comes close to the T-matrix’s estimates when stress amplifi-
cation makes a dominant impact. The compliance-based NIA
gives the best match with the T-matrix when the aspect ra-
tio of spatial distribution is very small, which represents the
crack interaction effect dominated by stress shielding. How-
ever, this should not be treated as physical equivalence. The
compliance-based NIA does not take into consideration the
crack interactions. Nonetheless, those pore and crack interac-
tions are explicitly characterized in the T-matrix formulation.
An additional insight that can be gained from this compar-
ison is that the SCA and DEM prediction approaches the
T-matrix prediction when the aspect ratio of the spatial distri-
bution is 1. This is in agreement with the assumption of SCA
and DEM, in which the cracks are randomly distributed and
interacted.
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Figure 8 Computed elastic stiffness C11 as a function of the aspect ratio of inclusion and the aspect ratio of spatial distribution. Porosity is set
as 0.01. Data are colour-coded by the value of effective elastic stiffness. Cracks are assumed (a) dry and (b) brine saturated.

In Fig. 10, we use a numerical example to demonstrate
that the effective elastic stiffness predicted by the compliance-
based NIA is unphysical. We assume the aspect ratio of the
inclusion is 1.0, suggesting that no anisotropy occurs in this
case. When the porosity is 100%, theoretically, the effective
bulk modulus of the rock should be zero, as the Kuster-Toksöz
model and T-matrix predict. However, the compliance-based
NIA increasingly overestimates the moduli as the porosity
increases and this overestimation is evident from the fact that it

predicts finite elastic moduli when the porosity reaches 100%.
Such an overestimate of effective elastic stiffness based on
NIA was also reported by Hu and McMechan (2009) and
Jaeger, Cook and Zimmerman (2007). In addition, this further
demonstrates that there is an insufficient physical foundation
to assume that the elastic interactions can be ignored at large
concentrations of pores.

As displayed in Fig. 11, we also examine how the spa-
tial distribution of cracks affects the seismic anisotropic
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Figure 9 Comparison of C11 as a function of crack density predicted
by different effective medium theories. The aspect ratio of the crack
is set as 0.05. The blue, purple, red and green lines represent predic-
tion by stiffness-based NIA, compliance-based NIA, DEM prediction
and SCA prediction, respectively. The black dashed lines indicate the
T-matrix prediction with different aspect ratios of spatial distribution.

Figure 10 Elastic modulus of rocks containing dry, randomly dis-
tributed spherical pores, according to various effective medium theo-
ries. The red, black and blue lines represent predicted bulk modulus
by the K-T model, T-matrix and compliance-based NIA, respectively.
For T-matrix modelling, the aspect ratio of spatial distribution is set
as 1.0.

parameters introduced for HTI media by Rüger (1997) and
Tsvankin (1997). It is clear that the impacts of spatial distri-
bution on seismic anisotropy become increasingly important
when the inclusion concentrations increase beyond the dilute
limit. Generally, the seismic anisotropy will increase as the
aspect ratio of spatial distribution increases. In other words,

the stress amplification effect will enhance the amplitude of
seismic anisotropy. In the real geological world, this may cor-
respond to the fracture configuration where the cracks have a
higher probability to appear in the vertical direction than the
horizontal direction. Moreover, the gamma parameter, which
is a measure of shear wave splitting that has been pointed
out in many papers (e.g., Bakulin, Grechka and Tsvankin
2000), is approximate to crack density, which indicates the
degree of fracturing. Figure 11(b) suggests that this approxi-
mation is reasonable only when the crack density is lower than
0.1. Nevertheless, at high crack density, when stress shielding
dominates the crack interactions (the aspect ratio of the spa-
tial distribution is small), the anisotropic parameter gamma
gives a significantly higher estimate of crack density (|γ | < e).
From Fig. 11, we also observe that the elliptical anisotropy
η = |ε − δ|, which is an important parameter for P-wave time
processing in anisotropic media, approximates to zero based
on the compliance-based NIA. However, the T-matrix for a
large aspect ratio of spatial distribution typically predicts pos-
itive elliptical anisotropy.

D I S C U S S I O N

The primary differences for the various inclusion and crack
models presented here lie in their strategies for extrapolating
the exact expression for deformation of a single ellipsoidal
inclusion (Eshelby 1957) to handle the elastic interactions be-
tween inclusions (Mavko and Vanorio 2008). Theoretically, a
good effective medium theory should satisfy two conditions.
First of all, it should work beyond the dilute limit; secondly,
it should characterize the pore and crack interactions with
physical foundations. However, from the perspective of prac-
tical application, different effective medium theories can be
selected according to the geological conditions. For exam-
ple, DEM and SCA can work reasonably well for randomly
distributed pores and cracks. For not heavily cracked reser-
voir rocks, the Hudson theory and compliance-based NIA
can still be used to link crack density to the effective elastic
properties with physical meaning. When dealing with pores
or cracks having a certain distribution configuration, the
T-matrix approach can offer a better prediction, which leads
to higher accuracy for the effective elastic responses and seis-
mic anisotropies. Nonetheless, given a real rock microstruc-
ture, it is often difficult to quantify the parameter concerning
the spatial distribution of cracks or pores. Besides, it is ob-
vious that the different spatial arrangements of cracks and
the localization processes can make an impact on the crack
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Figure 11 Comparisons of predictions of Thomsen’s anisotropic parameters as a function of crack density: (a) epsilon, (b) gamma and (c) delta.
The blue and purple lines represent predictions by stiffness-based NIA and compliance-based NIA, respectively. The black dashed lines indicate
T-matrix prediction with different aspect ratios of spatial distribution.

propagation and therefore the failure of the rock, which
should be considered in future work.

The current approaches to understand and handle elas-
tic interactions are based on the assumption that the pore
and crack geometries are ellipsoidal. However, in real sedi-
mentary rocks, pore and crack geometries are almost never
ellipsoidal and often exhibit hopelessly complex and irregular
microstructures. It is important to note that the stress interac-
tions significantly depend on the details of the crack shape. For
example, for smoothly tapered crack tips, the stress concen-
tration and dilution can exhibit a quite different distribution
compared with the case of ellipsoidal cracks and the resulting
stress interactions and effective stiffness might also be signif-
icantly changed. Some attempts have been made to model ef-
fective elastic moduli when the pore shapes are not ellipsoidal

(Mavko and Nur 1978; Schoenberg 1980; Zimmerman 1991;
Hudson and Liu 1999). As a consequence, the corresponding
elastic interactions due to the different geometric features of
cracks and pores should also be investigated in the future.

CONCLUSIONS

The spatial arrangements of pores and cracks, which are
mainly controlled and organized by geological processes, can
naturally cause local elastic field variation and hence affect the
effective elastic responses. We use the finite element modelling
method to illustrate that stress amplification due to coplanar
cracks significantly decreases the effective stiffness and the
stress shielding due to stacked cracks significantly increases
the effective stiffness. Rather than only using the volume

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 1–13



12 L. Zhao et al.

concentration and geometric features of pores and cracks,
we suggest that the spatial arrangement of pores and cracks
should be taken into account to compute the effective elastic
properties. It is also demonstrated that the T-matrix approach,
which explicitly takes into account the elastic interactions, can
be used to better understand the elastic characteristics and seis-
mic anisotropies due to varying spatial distributions of pores
and cracks.
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