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We have conducted simultaneous ultrasonic velocity and pore volume change measurements on
a carbonate rock sample. By including of pressure dependent porosity data, we have improved
Cheng’s pore aspect ratio spectrum inversion methodology and made the inverted pore aspect
ratio spectrum more realistic. Tang’s unified velocity dispersion and attenuation model is modified
and extended to poroelastic media with complex pore structure under undrained condition. Using
improved pore aspect ratio spectra inversion methodology and modified Tang’s model, we have
explored the potential application of pore aspect ratio spectrum in prediction of seismic wave
dispersion and attenuation.

Keywords: Pore aspect ratio; ultrasonic; dispersion; attenuation.

1. Introduction

It is generally believed that the pressure dependency of rock seismic velocities is primarily
caused by sequential closing of cracks or soft pores (Nur, 1969).1"3 Although these cracks
(also called soft pores) usually are volumetrically small, they can have significant satu-
ration effects? on seismic velocities. The soft pores may also be important for dispersion
and attenuation of seismic waves in porous rocks. During passing of the stress waves, the
dispersion induced by interaction of the pore fluids between the soft pores and the stiff
pores may be much stronger than that induced by the Biot flow, as shown in the ultra-
sonic measurement data by Han.* Several dual porosity (crack and stiff pore) models®® are
brought up to describe the dispersion and attenuation phenomena related to fluid interac-
tion between soft crack pores and stiff pores. The double porosity model'® 2 can describe
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dispersion and attenuation caused by heterogeneity of different scales. It is also possible to
measure the velocity dispersion and attenuation of porous rock as function of frequency in
laboratory, !4 but this technology is still in development and the measurement is much
more expensive than regular ultrasonic velocity measurement.

In this study, we concentrate on study of the dispersion and attenuation induced by
squirt flow and the Biot flow in complex pore system. The pore structure of the real rock
.15 One way to describe the com-
's16 ellipsoidal

is much more complicated than the dual porosity mode
plex pore system is using the pore aspect ratio spectrum. Based on Eshelby’s
inclusion theory and Kuster-Toks6z’s model,'” Cheng® uses the pressure dependent ultra-
sonic velocity data to invert the pore aspect ratio spectrum. The pore spectrum can also be
derived from mercury injection data or NMR logging data. If we know the pore structure
and the pore fluids, theoretically we should be able to predict the frequency dependent
behavior of seismic velocities of porous rocks. This study aims to explore the feasibility
to predict seismic wave dispersion and attenuation at a wide frequency range using the
pore aspect ratio spectra inverted from the pressure dependent ultrasonic velocity and pore
volume change measurement data.

2. Theory

Based on Eshelby’s'® study of elastic stress—strain field around an ellipsoidal inclusion,
Cheng?® derives the volume fractional change of the inclusion:

P,
dc K*
R + SUN— 1
' B3+ By
where
3ul,
FHL=——
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where ¢ is the volume fraction of the inclusion, p,. is the effective pressure, K* is the effective
bulk modulus, K and p are the bulk modulus and shear modulus of the rock matrix,
respectively, and « is the aspect ratio of the inclusion. If de/c < —1, then the crack is
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assumed to be closed. Equation (1) states that the pore volume change is a function of pore
aspect ratio and effective pressure if the matrix elastic properties are known. Concentration
of a certain group of cracks at pressure p, is related to its concentration at zero effective
pressure by

dc
Cnm = Com <]— + ?(O‘Omapn)>- (2)

In this section and the next, subscript n means that the parameter is pressure dependent
and m means that the parameter is a function of pore aspect ratio, subscript 0 refers to
status of zero effective pressure. If we assume the crack (pore) is in shape of spheroid and
the primary geometric change of the crack is variation of the shortest axis in response to
the applied stress field, we have

- Q

« C

Thus we can relate the aspect ratio change to its original status at zero effective pressure
by:

do de
Qpm = Qom <1 + E(QOmapn)> = Oom <1 + ?(OKOm’pn)> . (4)

From Egs. (2) and (4), the volume concentration of a certain type of crack and its aspect
ratio at any pressure can be related by:

Crm = Co—manm. (5)
0om
In summary, Egs. (1)-(5) describe how concentration and shape of pores with a certain
initial volume and aspect ratio change with applied stress. By assumption of spheroidal
shape and primary deformation in direction of the shortest axis, the change of aspect ratio
is equal to the fractional pore concentration change. Both changes are related to its initial
status (zero effective pressure), so that we only need to know the pore aspect ratio spectrum
at one stress status (e.g. the zero effective pressure condition), then the pore aspect ratio
spectrum at any pressure condition can be calculated using Eqgs. (1)—(5). These treatment
and simplification are critical, and make it possible to invert the pore aspect ratio spectrum
from the pressure dependent ultrasonic velocity measurements.
Considering higher concentration and possible effects of crack interaction, the effective
elastic moduli of the solid matrix with multiple ellipsoidal inclusions are estimated by the
extended Kuster-Toksoz theory,® which can be written in simple matrix form as:

M
E Cnman = bKna
m=1

M
Z Cannm = bGna

m=1
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using notation
K:—K 3K;—4u
bK'rL = ’ ’
K'— K 3K+4p
fr = 1 6y (K +2p) + p(9K + 8p)
W= p 25u(3K + 4p1) ’

where the elastic moduli without superscript are for the background medium, the moduli
with prime (') are for the inclusion, and * indicates effective modulus, and

(7)

bGn =

1
an - gTiijj (anm)7
. (8)
Qnm = Tijij (Oénm) - _Tiijj (anm)7

3

where T and Tjj; are scalar functions of pore aspect ratio and elastic moduli of the
background medium. Their expressions can be found in the Appendix of Refs. 2,3,17 and
18. Substituting Eq. (5) into Eq. (6), we get

M c
0
Z anman—m = bKna
m=1 Qom
9
, c Q
0
Z aannm—m = bGn-
— Qom
m=1
This is a linear equation system in the form of Ax = b, where ay,, is given and z,, =
Com/om are the roots to be solved. The pore aspect ratio spectrum at any pressure can be
computed from the solution using Egs. (4) and (5).

3. Improvement on Cheng’s Methodology

Cheng’s primary contribution is to describe how the pore system changes with effective
pressure. However, to invert the pore aspect ratio spectra, constant porosity constraint in
either of following forms is applied to solve the above linear system (Eq. (9)).

M
clag=1)=¢— c(am), (10)
m=2
M
Aclor =1) = = > Ac(am). (11)
m=2

This is a paradox since the algorithms in last section basically describe the sequential
deformation and closing of cracks of different pore aspect ratios with increasing effective
pressure, that is to say, how the pore volume changes with the effective pressure. As we
discussed earlier, this small portion of pore volume change can have a significant effect
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on the elastic properties of the rocks and its subtle change should not be neglected. Thus,
including pressure dependent porosity data is important for reliable inversion of pore aspect
ratio spectra. Although the total pore volume change is usually small (around 1%), it can
be reliably measured during pressure dependent velocity measurements.* From Eq. (5), it
is straightforward that the total porosity at any pressure can be computed by

M M c
0
Otn = Z Cnm = Z —manm- (12)
_ — Q0om
m=1 m=1

We can combine above equation with Eq. (9) to make the inverted pore aspect ratio spectra
at different pressures comply with measured porosity change data and make the inverted
results more realistic. The final linear system becomes

11 Q12 e Q1M on
21 22 e Q20N D2
ant anz - any ‘oL biN
a
annPi1r aePi2 o0 aam Py ot b1
apPor Py oo aopPoyr || €02 bi
Qo2 | — . (13)
anPni aPny - aamPNm | | ey, brN
an@Qu a2z - amQim | | | b1
a11Q21 a12Q22 - s Qon ba2
lan1@n1 a@n2 o QN | b |

where N is the number of the pressure measurement points and M is the number of elements
of the pore aspect ratio spectrum.

4. Pressure Dependent Porosity Measurement

With increasing differential pressure, the cracks and pores with different shapes will deform
or even close. This process is also a process of pore volume change, which alters the elas-
tic and viscoelastic properties of the rocks. Therefore, it is important to monitor the pore
volume change during pressure dependent ultrasonic velocity measurement. Using high reso-
lution digital pump, pore volume change measurement can be a convenient and cost-efficient
by-product of the traditional ultrasonic velocity measurement.

Figure 1 shows the diagram of pressure dependent ultrasonic velocity and porosity mea-
surement. Both the confining pressure (P.) and the pore pressure (P,) are controlled by
the digital pumps. The confining pressure simulates the stress produced by the overburden
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Fig. 1. Diagram of pressure dependent ultrasonic velocity and porosity measurement.

rocks. The pore fluid and the confining fluid are separated by the buffers and the jacket
which holds the cylindrical core sample. During the measurement, the pore pressure is set
to a desired value and then kept constant so that effect of pore fluid compressibility can be
ignored. With variation of the confining pressure, the pore fluid will be absorbed into or
squeezed out from the pore system, and the amount of the pore fluid volume variation can
be read from the digital pump. Therefore, we can measure the velocities and pore volume
changes with differential pressure (the difference between P, and P,) simultaneously. There
is a difference between differential pressure and effective pressure, and the elastic properties
of porous media are affected by the effective pressure. If the confining pressure is much
higher than the pore pressure, which is our case, the difference between effective pressure
and differential pressure is usually not important.

To estimate the pressure dependent porosity, we still need the traditional porosity mea-
surement, which is often conducted at zero effective pressure using helium porosimeter. The
primary uncertainty in monitoring pore volume change comes from the coupling between
the core sample, the buffers and the jacket. An expedient handling is to assume that the
porosity measured by the helium porosimeter equals to the porosity when the sample is
properly coupled with its surroundings (buffers and jacket), usually under differential pres-
sure around 3 MPa. With decreasing confining pressure, the pore volume increases and
more fluids will be absorbed into the pore system from the reservoir tank of the digital
pump. For a typical 1-1/2 inch reservoir core sample, the total pore volume change for
differential pressure variation range of 3-50 MPa is around 0.1-0.5ml. The volume of the
reservoir tank of the digital pump is monitored and displayed in real time, with resolution
that can be as high as 2.5 nanoliters depending on the digital pump model. At each pressure
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Fig. 2. Pressure dependent porosity measurement and modeling on a carbonate sample.

measurement point, we wait around 30 min for the pore fluid system to reach pressure equi-
librium. This way, the measured pressure dependent porosity can be reasonably reliable.
Figure 2 shows the pressure dependent porosity measurement data for a calcarenite (car-
bonate sands) core sample. The porosity measured by helium porosimeter is 12.5%. The
total pore volume change for the core sample in this study is about 0.15 ml in the pressure
range of measurement.

5. Example of Pore Aspect Ratio Spectra Inversion

For this carbonate core sample, we have also measured pressure dependent P-wave velocity
and S-wave velocity under 100% water saturation, as shown in Fig. 3. With these three
sets of data (pressure dependent P-wave velocity, S-wave velocity and porosity), using the
improved pore aspect ratio inversion methodology, we can invert the pore aspect ratio at
zero effective pressure condition. Here the number and values of the pore aspect ratios
(cvom ) are arbitrarily given. ag,, describes how the complex pore structure is discretized.
More elements are better for accurate representing the complex pore structure, but they can
be resolved with more uncertainty. We solve Eq. (13) as an over-determined linear system
in least-square sense and the total number of elements is limited by the data points. In
this study, we select the initial total elements M to be 22, which is 2/3 of the data points.
Another important consideration in choosing ayg,, is that the pore aspect ratio spectrum is
more densely sampled for the softer pores than for the stiffer pores because the former is
more sensitive to stress change. The other input parameters are the solid rock frame bulk
modulus (K = 77 GPa) and shear modulus (x = 36 GPa).

After cg,, is solved from Eq. (13), we know the pore aspect ratio spectrum at zero effective
pressure. Then using Eqs. (4) and (5), the pore aspect ratio spectrum at any differential
pressure can be computed. Figure 3 shows the pore aspect ratio spectra at differential
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Fig. 3. Inverted pore aspect ratio spectra at different differential pressures.

pressures of 0, 10, 20, 30, 40, 50 and 60 MPa. As we can see from Fig. 3, with increasing
of differential pressure, the number of elements of the pore aspect ratio spectrum decreases
as the softer pores (cracks) are sequentially closed. The decrease of concentration of pores
of a certain pore aspect ratio is more observable for the softer pores than the stiffer pores.
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Fig. 4. Comparison between measured and modeled ultrasonic velocities (100% water saturation) on a

carbonate sample. The upper data points are for the P-wave velocity and the lower data points are for the
S-wave velocity.
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The uneven distribution in the dense section of the pore aspect ratios at zero differential
pressure means the inverted concentrations for pores of certain pore aspect ratios are zero.

The inversion process is also a modeling process. Using the inverted pore aspect ratio
spectra and Eq. (12), we can model the pressure dependent porosity changes. As shown in
Fig. 2, the modeled porosity changes generally fit well with the measured porosity data.
Using Kuster—Toksoz theory, the modeled P-wave velocity and S-wave velocity are shown
in Fig. 4. The modeled velocities fit well with the measured data. Since the inverted pore
aspect ratio spectra fit well with the measured porosity changes, it is logical to believe that
the inverted pore aspect ratio spectra using our improved methodology are more realistic
than those inverted by Cheng’s® methodology because closing and deformation of pores
with various pore aspect ratios have no effect on the total porosity in the latter case.

6. Application of Inverted Pore Aspect Ratio Spectra

Originally, the concept of pore aspect ratio spectrum was brought up to describe the complex
pore structure and its relation with the effective elastic properties of the porous medium.?
From variation of the pore aspect ratio spectrum, we can predict the stress effect on the
elastic properties, especially the seismic wave velocities of the rocks. In seismic exploration,
as seismic waves pass through the subsurface rock formations, it will produce stress dis-
turbance. This stress disturbance will cause dynamic deformation of the porous rock. The
pores with different pore aspect ratio will deform differently. The pore fluid in softer pores
with smaller pore aspect ratio will be squeezed harder and produce higher pressure distur-
bance than the pore fluid in the stiffer pores. The pore fluids exchange between pores of
different pore aspect ratios is chaotic and not in step with seismic wave propagation. This
mechanism is called squirt flow and can cause significant attenuation of the seismic waves.
If we know the pore structure (the pore aspect ratio spectrum), theoretically we should be
able to quantify attenuation of the seismic waves caused by fluid exchange between pores
of different shapes. This may be a more important and practical application of pore aspect
ratio spectrum.

Within the framework of the Biot theory, Tang® brought up a unified model to describe
wave propagation in porous media affected by the Biot flow and the squirt flow. Similar to
the BISQ (Biot-squirt) model,>!? the high frequency limit of Tang’s model is equivalent to
that of the Biot theory, and the lower limit of Tang’s model is below the lower limit of the
Biot—Gassman theory and close to the drained lower limit predicted by the BISQ model.
So Tang’s model is for drained condition and is not applicable to the general subsurface
scenarios in seismic exploration.2’

For rocks under subsurface conditions, if we assume the wavelength is much larger than
the grain size, compared to the Biot flow, the communication of pore fluids between cracks
and stiff pores is more eligible to be treated as local flow in closed boundary. As long as the
pore fluids are not completely relaxed, the effective bulk modulus should always be higher
than that predicted by the Biot—Gassmann theory. At high frequency limit, the pore fluids
in the cracks are locked and the cracks are effectively stiff, so the velocity is higher than the
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high limit predicted by the Biot—Gassmann theory; at low frequency limit, the pore fluids
in the cracks are completely relaxed (reaches pressure balance with the pore fluid in the stiff
pores), the cracks are effectively soft, then the velocity should be equal to that predicted
by the Gassmann equation (lower limit of the Biot theory). Under this principle, following
Tang’s procedure, we have re-derived and modified Tang’s model as:

n?
K=K 14
d+ﬂ+i_A5(w)7 )

Km | Ky

where K* is the effective bulk modulus without considering effect of the Biot flow, Ky is
the dry bulk modulus and n is the Biot coefficient. The detailed derivation can be found
in Yao’s?® dissertation. AS(w) is the term related to squirt flow and instantaneous storage
capacity of the cracks, and it is represented by:

AS(w) = Spax — S(w), (15)
where
g e Kg(Vm — 1)(K* — Kiy)
max — 3N(K* — Kd)Kd ’
8 1—uyy, 1/Ky—1/K,,
o 3™ f(<) <W—f@)>
+ W( — f(¢)
with
~2J1(Q)
Q) = hole)’
B Jiwn
C - OéQKf7

where w is the angular frequency, 7 is the pore fluid viscosity, « is the pore aspect ratio, vy,
is the Poisson’s ratio of the background medium and ¢ is the crack density, which can be
calculated by

e

2ma’

(16)

where ¢, is the concentration of cracks with pore aspect ratio a. Spax is the term related
to maximum fluid volume transferred from cracks to stiff pores if the cracks are completely
relaxed (w — 0). Similar to the treatment of DEM model,?"?? for multiple inclusions of
cracks with different aspect ratios, the effect of cracks can be added differentially to the
system and the effective modulus (K*) is updated iteratively. Since the squirt flow is a
nonlinear process, the differential scheme is more rational because it considers the pore
pressure increase in the stiff pores while the pore fluid in the soft pores is squeezed into
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the stiff pores. The original Tang’s model® assumes the pore pressure in the stiff pores does
not increase while the pore fluid in soft pores is squeezed into the stiff pores. Therefore,
the original Tang model® might break down even at moderate low crack density because of
overestimation of the squirt flow. The modified Tang’s model using differential scheme does
not break at high crack density. The final computed effective modulus (K*) is substituted
into the Biot theory formulated by Tang and Cheng??® to calculate the wave velocities
under influence of Biot flow and squirt flow. The velocity dispersion and attenuation can
be calculated by,?

YT Re[k]’ 17)
_1_ 2Im[E]
Q= R (18)

where @ is the quality factor and k is the wavenumber. Re[k] and Im[k] are the real part
and imaginary part of k, respectively.

For the carbonate rock sample under study, we have shown that the pore volume change
due to closure and deformation of the crack pores generally agrees with the measured
porosity change, and the pressure dependent velocity data can be modeled with good match
using Kuster-Toks6z!” model, thus we have reasonable confidence in the inverted pore
aspect ratio spectra. We have also measured the dry rock P-wave and S-wave velocities, as
shown in Fig. 5. The inverted pore aspect ratio spectra are then put into the modified Tang’s
model to predict the velocity dispersion and attenuation. The other input parameters for
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1 o © ©
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- [ ]
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2401
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2
(]
>
3.0 1
PY ) [ [ ] [ ) [ J o [ J
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Differential pressure (MPa)

Fig. 5. Measured P-wave velocity (the upper data points) and S-wave velocity on the dry carbonate rock
sample.
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Frequency (Hz)
Fig. 6. Prediction of fast P-wave velocity dispersion at different differential pressures. Solid curves are
predicted by modified Tang’s model, dashed lines are velocity dispersion predicted by the Biot theory.

Darker curve represents lower differential pressure. Data points at 10% Hz are measured ultrasonic P-wave
velocities at different differential pressures and full water saturation.

prediction of velocity dispersion and attenuation are rock permeability of 1 mD, pore fluid
viscosity of 1 cp and tortuosity of 2.4.

Figure 6 shows prediction of the fast P-wave velocity dispersion at different differential
pressures. For clarity, we only show predictions for alternating pressure measurement points
(3, 10, 20, 30, 40, 60 MPa). The solid curves are predicted by the modified Tang’s model,
and the dashed lines are velocity dispersion predicted by the Biot theory. Data points at
10% Hz are measured ultrasonic P-wave velocities at corresponding differential pressures and
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Fig. 7. Fast P-wave attenuation at different differential pressures corresponding to Fig. 6.
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in 100% water saturation. It can be seen that the predictions match fairly well with the
measured ultrasonic P-wave velocities. For this sample, the P-wave dispersion are primar-
ily caused by squirt flow. The amount of dispersion caused by the Biot flow is small and
occurs at very high frequency (around 10° Hz). The P-wave dispersion is stronger at the
lower differential pressures when most of the soft pores are open. With increasing differen-
tial pressure, soft pores are being sequentially closed and the dispersion caused by squirt
flow decreases. The characteristics of P-wave velocity dispersion at low differential pressure
comply with the laboratory observation.'* The corresponding fast P-wave attenuation is
shown in Fig. 7. The attenuation induced by squirt flow is dominant and can occur at a
wide frequency range, while attenuation caused by the Biot flow is negligible and occurs
at much higher frequency. With increasing differential pressure, the attenuation frequency
band generally becomes narrower.

7. Conclusions

Based on Cheng’s pore aspect ratio spectrum inversion methodology, we have related clo-
sure and deformation of the soft pores to the measured pressure dependent porosity data.
With this additional constraint, the inverted pore aspect ratio spectra are more realistic.
Combining the improved pore aspect ratio spectrum inversion methodology and the adapted
Tang’s model, we established a general framework for prediction of seismic wave attenua-
tion and dispersion using pressure dependent ultrasonic velocity and pore volume change
measurement data.
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