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v Introduction

v" Velocity —Porosity relations for mapping porosity and
facies

v Fluid substitution analysis



' 1.1 Introduction

“ Discovering and understanding the seismic-to-reservoir
relations has been the focus of rock physics research”



1.2 Velocity — Porosity relations

Classical models:

* Wyllie time average |

* Raymer - Hunt - Gardner Cal'Eflll! !!

* Raiga - Clemenceau @

® (Critical porosity
Wrong V-¢ model

9

Fluid Substitution
problems
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Bounds: framework for V-¢ models

For each constituent:
1. Volume fraction
2. Elastic moduli

Upper and
lower bounds

K;

0 Volume fraction of material 2 1
Avseth et al,, 2005 3. Geometric arrangement
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Elastic bounds

v Voigt and Reuss: K= > XK. =5 X
- Simplest bounds =1 i=1

1/K, =Zn:Xi/Ki , U :anxi [ 1
i1 i1

v" Hashin-Shtrikman: KHS+ = f (Ki, pmax, Xi)
- Best bounds for an isotropic mixture Kas- = f (Ki, pmin, Xi)
without specifying geometric

MHS+ = f (|.li, Mmax, Kmax, Xi)
arrangement.

- Applicable to more than 2 phases. HHS- = f (pi, pmin, Kmin, Xi)

Upper and lower bounds depend on how different
the constituents are.
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Voigt-Reuss vs. Hashin-Shtrikman
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Watt, Davies, and O’Connell, 1976
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diagenesis
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“Diagenesis is the stiffest way to reduce porosity”

Avseth et al., 2005
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“Diagenesis is the stiffest way to reduce porosity”

Avseth et al., 2005
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= affecting velocities

* P and S velocities depend greatly on porosity.

® Porosity can be estimated from impedance.

e Clay increases VP/VS ratio (consolidated sands).
* Clay stiffens rock (unconsolidated sands).

* Pore shape cause variable V-¢ trends (crack-like aspect
ratio has similar signature than high clay content and poor
sorting)
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1.3 I|:Iuid Substitution

“How seismic velocity and impedance depend on pore fluids”

2 fluid effects:

Change in
rock bulk

Change in rock
compressibility

Kd

density

“Seismic fluid sensitivity is determined by a combination of
porosity and pore-space stiffness”



1 .3 Fluid Substitution

How to do fluid substitution?
R: follow the steps in page 18.

How to calculate fluid properties?
R: Use Batzle and Wang (1992) formulas to calculate fluid moduli.

How to approximate dry rock condition?
R: air-filled rock with a pore pressure of 1 bar (don’t use just gas).

How to relate Gassmann’s equations and ultrasonic measurements?
R: use dry ultrasonic velocities and saturate them using Gassmann
equations.

How to obtain mineral moduli for complex rocks?
R: Compute upper and lower bounds of the mixture of minerals and take the
average. Or use Berryman and Milton equation.

How to deal with mixed saturation?

pr— - v —— ° > A e o Valal it v " i | 1 v 4 \
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" 1.3 Fluid Substitution

» Valid for seismic frequencies.

* Not appropriate for ultrasonic velocities, heavy oils and tight
sands reservoirs.

* Valid for isotropic rocks . | |
patchy (upper bound)
» Valid for uniform distribution = swj == . AL N
of fluid _
% 2500 [~ \ .
E o Drainage uniform
. = . Imibdbation
Rock modulus with patchy (lower bound)
saturation can be approximated mﬂ, /
. ) O fa an
by wusing Voigt average to - N "“‘“‘:s‘ﬂ
estimate effective fluid 1500 | ' ' |
0 20 40 60 80 100

properties. Water saturation ~ Avseth et al., 2005
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relationship at a constant confining pressure 50
(50 MPa). Distinct trends for shaly sand and
for shale are schematically superposed on
experimental data on sand-clay mixture. From
Dominique Marion, 1990, Ph.D. dissertation,
Stanford University. ~ Data are from Yin, et al., 20
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