Introduction to Rock Physics

Sections 1.1 – 1.3

Rock Physics Seminar Alejandra Rojas

February 6th, 2009

Outline

✓ Introduction

✓ Velocity –Porosity relations for mapping porosity and facies

✓ Fluid substitution analysis

"Discovering and understanding the seismic-to-reservoir relations has been the focus of rock physics research"

1.2 Velocity – Porosity relations

Classical models:

- Wyllie time average
- Raymer Hunt Gardner
- Raiga Clemenceau
- Critical porosity

Bounds: framework for V-φ models

For each constituent:

- 1. Volume fraction
- 2. Elastic moduli

3. Geometric arrangement

Elastic bounds

- ✓ Voigt and Reuss:
 - Simplest bounds

$$K_{v} = \sum_{i=1}^{n} x_{i} K_{i}$$
 , $\mu_{v} = \sum_{i=1}^{n} x_{i} \mu_{i}$

$$1/K_r = \sum_{i=1}^n x_i / K_i$$
, $1/\mu_r = \sum_{i=1}^n x_i / \mu_i$

- ✓ Hashin-Shtrikman:
 - Best bounds for an isotropic mixture without specifying geometric arrangement.
 - Applicable to more than 2 phases.

KHS+ =
$$f$$
 (Ki, μ max, Xi)
KHS- = f (Ki, μ min, Xi)
 μ HS+ = f (μ i, μ max, Kmax, Xi)
 μ HS- = f (μ i, μ min, Kmin, Xi)

Upper and lower bounds depend on how different the constituents are.

Voigt-Reuss vs. Hashin-Shtrikman

Using bounds to describe diagenesis

Diagenetics vs. depositional trends

"Diagenesis is the stiffest way to reduce porosity"

Diagenetics vs. depositional trends

"Diagenesis is the stiffest way to reduce porosity"

Factors affecting velocities

- P and S velocities depend greatly on porosity.
- Porosity can be estimated from impedance.
- Clay increases VP/VS ratio (consolidated sands).
- Clay stiffens rock (unconsolidated sands).
- Pore shape cause variable V-φ trends (crack-like aspect ratio has similar signature than high clay content and poor sorting)

1.3 Fluid Substitution

"How seismic velocity and impedance depend on pore fluids"

2 fluid effects:

Change in rock bulk density

"Seismic fluid sensitivity is determined by a combination of porosity and pore-space stiffness"

1.3 Fluid Substitution

How to do fluid substitution?

R: follow the steps in page 18.

How to calculate fluid properties?

R: Use Batzle and Wang (1992) formulas to calculate fluid moduli.

How to approximate dry rock condition?

R: air-filled rock with a pore pressure of 1 bar (don't use just gas).

How to relate Gassmann's equations and ultrasonic measurements?

R: use dry ultrasonic velocities and saturate them using Gassmann equations.

How to obtain mineral moduli for complex rocks?

R: Compute upper and lower bounds of the mixture of minerals and take the average. Or use Berryman and Milton equation.

How to deal with mixed saturation?

1.3 Fluid Substitution

- Valid for seismic frequencies.
- Not appropriate for ultrasonic velocities, heavy oils and tight sands reservoirs.
- Valid for isotropic rocks
- Valid for uniform distribution of fluid

Rock modulus with patchy saturation can be approximated by using Voigt average to estimate effective fluid properties.

2 0

4 0

Clay Content by Weight (%)

6 0

100

8 0